Masanori IZUMI

Senior Researcher
Ph. D

泉正範の写真
 
  • Senior Research Scientist, Molecular Bioregulation Research Team
    RIKEN Center for Sustainable Resource Science
  • #N401 4F Bioscience Building, 2-1 Hirosawa, Wako, Saitama 351-0198 Japan
    E-mail: masanori.izumi [at] riken.jp (Please replace [at] to @)

Personal History

  • 2012.3 Ph.D, Department of Applied Biological Chemistry, Graduate School of Agricultural Science, Tohoku University

  • 2009.4 JSPS Research Fellow (DC1)
  • 2012.4 JSPS Research Fellow (PD)
  • 2014.4 Assistant Professor, Frontier Research Institute for Interdisciplinary Sciences, Tohoku University
  • 2014.4 (Concurrent appointment) Assistant Professor, Graduate School of Life Sciences, Tohoku University
  • 2015.8 (Concurrent appointment) Visiting Researcher, University of Oxford
  • 2016.10 (Concurrent appointment) JST PRESTO Researcher
  • 2019.4 Research Scientist, Molecular Bioregulation Research Team, RIKEN Center for Sustainable Resource Science
  • 2020.10 Senier Research Scientist, Molecular Bioregulation Research Team, RIKEN Center for Sustainable Resource Science

Keywords

  • Chloroplast, Autophagy, Protein Degradation

Awards

  • 2020.9 The encouragement award, Japanese Society of Soil Science and Plant Nutrition
  • 2019.4 The Young Scientists’ Prize, The Commendation for Science and Technology by the Minister of Education, Culture, Sports, Science and Technology
  • 2015.1 Best Poster Award, Gordon Research Conference on Chloroplast Biotechnology

Invited and Plenary Lectures

  1. "Two forms of autophagy for chloroplast turnover"
    RIKEN seminar, RIKEN, 16th January, 2020
  2. "Chloroplast degradation pathways by autophagy"
    The 6th CSRS-ITbM joint workshop, RIKEN, 8th January, 2020
  3. "Selective turnover of photodamaged chloroplasts by autophagy"
    Japan-Finland Seminar 2018, Kobe, 24th-27th September, 2018
  4. "How chlorophagy is executed: Induction and intracellular events"
    Gordon Research Conference on Mitochondria & Chloroplasts, Italy・Lucca, 8th-13th July, 2018
  5. "Coordination of two types of autophagy for the controlled turnover of chloroplasts"
    East Asian Symposium on Senescence and Chronobiology in Plants, Korea・Daegu, 1st December, 2017

Publications

Original papers

  1. Izumi M*, Nakamura S, Otomo K, Ishida H, Hidema J, Nemoto T, Hagihara S (2023) Autophagosome development and chloroplast segmentation occur synchronously for piecemeal degradation of chloroplasts. eLife DOI: 10.7554/eLife.93232.1
  2. Nakamura S, Hagihara S, Otomo K, Ishida H, Hidema J, Nemoto T, Izumi M* (2021) Autophagy contributes to the quality control of leaf mitochondria. Plant Cell Physiology 62: 229-247
  3. Kikuchi Y, Nakamura S, Woodson JD, Ishida H, Ling Q, Hidema J, Jarvis RP, Hagihara S, Izumi M* (2020) Chloroplast autophagy and ubiquitination combine to manage oxidative damage and starvation responses. Plant Physiology 183: 1531–1544, DOI: 10.1104/pp.20.00237
  4. Nakamura S, Izumi M* (2019) Chlorophagy is ATG gene-dependent microautophagy process, Plant Signaling & Behavior 14: 1554469, DOI: 10.1080/15592324.2018.1558679
  5. Izumi M, Ishida H* (2019) An additional role for chloroplast proteins—an amino acid reservoir for energy production during sugar starvation, Plant Signaling & Behavior 14: 1552057, DOI: 10.1080/15592324.2018.1552057
  6. Nakamura S, Hidema J, Sakamoto W, Ishida H, Izumi M* (2018) Selective elimination of membrane-damaged chloroplasts via microautophagy, Plant Physiology, 177: 1007-1026, DOI: 10.1104/pp.18.00444
  7. Hirota T1, Izumi M1, Wada S, Makino A, Ishida H* (2018) Vacuolar Protein Degradation via Autophagy Provides Substrates to Amino Acid Catabolic Pathways as an Adaptive Response to Sugar Starvation in Arabidopsis thaliana. Plant & Cell Physiology 59: 1363-1376, DOI: 10.1093/pcp/pcy005, 1equally contributed
  8. Izumi M*¸ Nakamura S (2017) Partial or entire: distinct responses of two types of chloroplast autophagy. Plant Signaling & Behavior 12: e1393137, DOI: 10.1080/15592324.2017.1393137
  9. Izumi M*, Nakamura S (2017) Vacuolar digestion of entire damaged chloroplasts in Arabidopsis thaliana is accomplished by chlorophagy. Autophagy 13: 1239-1240, DOI: 10.1080/15548627.2017.1310360
  10. Izumi M, Ishida H, Nakamura S, Hidema J* (2017) Entire photodamaged chloroplasts are transported to the central vacuole by autophagy. The Plant Cell 29: 377-394, DOI: 10.1105/tpc.16.00637
  11. Wada S, Hayashida Y, Izumi M, Kurusu T, Hanamata S, Kanno K, Kojima S, Yamaya T, Kuchitsu K, Makino A, Ishida H* (2015) Autophagy supports biomass production and nitrogen use efficiency at the vegetative stage in rice. Plant Physiology 168: 60-73, DOI: 10.1104/pp.15.00242
  12. Izumi M, Hidema J, Ishida H* (2015) From Arabidopsis to cereal crops: Conservation of chloroplast protein degradation by autophagy indicates its fundamental role in plant productivity. Plant Signaling & Behavior 10: e1101199 DOI: 10.1080/15592324.2015.1101199
  13. Izumi M, Hidema J, Wada S, Kondo E, Kurusu T, Kuchitsu K, Makino A, Ishida H* (2015) Establishment of monitoring methods for autophagy in rice reveals autophagic recycling of chloroplasts and root plastids during energy limitation. Plant Physiology 167: 1307-1320, DOI: 10.1104/pp.114.254078
  14. Takahashi S, Teranishi M, Izumi M, Takahashi M, Takahashi F, Hidema J* (2014) Transport of rice cyclobutane pyrimidine dimer (CPD) photolyase into mitochondria relies on a targeting sequence located in its C-terminal internal region. The Plant Journal 79: 951-963, DOI: 10.1111/tpj.12598
  15. Izumi M, Hidema J, Ishida H* (2013) Deficiency of autophagy leads to significant changes of metabolic profiles in Arabidopsis. Plant Signaling & Behavior 8: e25023, DOI: 10.4161/psb.25023
  16. Izumi M, Hidema J, Makino A, Ishida H* (2013) Autophagy contributes to nighttime energy availability for growth in Arabidopsis. Plant Physiology 161: 1682-1693, DOI: 10.1104/pp.113.215632
  17. Ono Y, Wada S, Izumi M, Makino A, Ishida H* (2013) Evidence for contribution of autophagy to Rubisco degradation during leaf senescence in Arabidopsis thaliana. Plant, Cell and Environment 36: 1147-1159, DOI: 10.1111/pce.12049
  18. Izumi M, Tsunoda H, Suzuki Y, Makino A, Ishida H* (2012) RBCS1A and RBCS3B, two major members within the Arabidopsis RBCS multigene family, function to yield sufficient Rubisco content for leaf photosynthetic capacity. Journal of Experimental Botany 63: 2159-2170, DOI: 10.1093/jxb/err434
  19. Izumi M, Ishida H* (2011) The changes of leaf carbohydrate contents as a regulator of autophagic degradation of chloroplasts via Rubisco-containing bodies during leaf senescence. Plant Signaling & Behavior 6: 685-687, DOI: 10.4161/psb.6.5.14949
  20. Izumi M, Wada S, Makino A, Ishida H* (2010) The autophagic degradation of chloroplasts via Rubisco-containing bodies is specifically linked to leaf carbon status but not nitrogen status in Arabidopsis. Plant Physiology 154: 1196-1209, DOI: 10.1104/pp.110.158519
  21. Wada S, Ishida H, Izumi M, Yoshimoto K, Ohsumi Y, Mae T, Makino A* (2009) Autophagy plays a role in chloroplast degradation during senescence in individually darkened leaves. Plant Physiology 149: 885-893, DOI: 10.1104/pp.108.130013
  22. Ishida H*, Yoshimoto K, Izumi M, Reisen D, Yano Y, Makino A, Ohsumi Y, Hanson MR, Mae T (2008) Mobilization of Rubisco and stroma-localized fluorescent protein of chloroplasts to the vacuole by an ATG gene-dependent autophagic process. Plant Physiology 148: 142-155, DOI: 10.1104/pp.108.122770

Review papers

  1. Nakamura S, Hagihara S, Izumi M* (2021) Mitophagy in plants, Biochimica et Biophysica Acta - General Subjects 1865: 129916
  2. Izumi M*, Nakamura S, Li N (2019) Autophagic turnover of chloroplasts: its roles and regulatory mechanisms in response to sugar starvation. Frontiers in Plant Science 10: 280, doi: 10.3389/fpls.2019.00280
  3. Nakamura S, Izumi M* (2018) Regulation of chlorophagy during photoinhibition and senescence: lessons from mitophagy. Plant Cell & Physiology, 59:1135-1143, DOI: 10.1093/pcp/pcy096
  4. Izumi M*, Nakamura S (2018) Chloroplast Protein Turnover: The Influence of Extraplastidic Processes, Including Autophagy. International Journal of Molecular Sciences, 19: 828, DOI: 10.3390/ijms19030828
  5. Ishida H*, Izumi M, Wada S, Makino A (2014) Roles of autophagy in chloroplast recycling. Biochimica et Biophysica Acta - Bioenergetics 1837: 512-521, DOI: 10.1016/j.bbabio.2013.11.009

Commentaries

  1. Izumi M*, Yoshimoto K, Batoko H (2020) Organelle Autophagy in Plant Development. Froniers in Plant Science 11: 502 DOI: 10.3389/fpls.2020.00502
  2. Izumi M* (2019) How to identify autophagy modulators. Plant Physiology 181: 853-854 DOI: 10.1104/pp.19.01146
  3. Izumi M* (2019) Heat shock proteins support refolding and shredding of misfolded proteins. Plant Physiology 180: 1777 DOI:10.1104/pp.19.00711
  4. Izumi M* (2019) Mitochondrial dynamics for pollen development, Plant Physiology 180: 686-687 DOI: 10.1104/pp.19.00335
  5. Izumi M* (2019) Roles of the Clock in Controlling Starch Metabolism, Plant Physiology 179: 1441-1443 DOI: 10.1104/pp.19.00166
  6. Izumi M* (2018) Discovery of mitochondrial endonucleases, Plant Physiology 178: 1428-1429 DOI: 10.1104/pp.18.01197