Masanori IZUMI

Researcher
Ph. D

泉正範の写真
 
  • Research Scientist, Molecular Bioregulation Research Team
    RIKEN Center for Sustainable Resource Science
  • #N401 4F Bioscience Building, 2-1 Hirosawa, Wako, Saitama 351-0198 Japan
    E-mail: masanori.izumi [at] riken.jp (Please replace [at] to @)

Personal History

  • 2012.3 Ph.D, Department of Applied Biological Chemistry, Graduate School of Agricultural Science, Tohoku University

  • 2009.4 JSPS Research Fellow (DC1)
  • 2012.4 JSPS Research Fellow (PD)
  • 2014.4 Assistant Professor, Frontier Research Institute for Interdisciplinary Sciences, Tohoku University
  • 2014.4 (Concurrent appointment) Assistant Professor, Graduate School of Life Sciences, Tohoku University
  • 2015.8 (Concurrent appointment) Visiting Researcher, University of Oxford
  • 2016.10 (Concurrent appointment) JST PRESTO Researcher
  • 2019.4 Research Scientist, Molecular Bioregulation Research Team, RIKEN Center for Sustainable Resource Science

Keywords

  • Chloroplast, Autophagy, Protein Degradation

Awards

  • 2019.4 The Young Scientists’ Prize, The Commendation for Science and Technology by the Minister of Education, Culture, Sports, Science and Technology
  • 2015.1 Best Poster Award, Gordon Research Conference on Chloroplast Biotechnology
  • 2012.3 平成23年度東北大学大学院農学研究科長賞 (博士課程後期)
  • 2009.3 平成20年度東北大学大学院農学研究科長賞 (博士課程前期)

Invited and Plenary Lectures

  1. 泉正範, 科学技術人材育成のコンソーシアムの構築事業」の仕組みを活用した共同研究の創出と推進
    連携型博士研究人材総合育成システムシンポジウム2018, 仙台・東北大学, 2018年10月4日
  2. Izumi M, Selective turnover of photodamaged chloroplasts by autophagy
    Japan-Finland Seminar 2018, 日本・神戸, 2018年9月24-27日
  3. Izumi M, How chlorophagy is executed: Induction and intracellular events
    Gordon Research Conference on Mitochondria & Chloroplasts, Italy・Lucca, 2018年7月8-13日
  4. 泉正範, 体内窒素利用と光合成活性のバランスは改変し得るか?
    日本光合成学会, 仙台・東北大学, 2018年5月26-27日
  5. 泉正範, 中村咲耶, 菊池悠太, クロロファジーによる葉緑体の品質管理
    日本植物生理学会, 札幌・札幌コンベンションセンター, 2018年3月28-30日
  6. 泉正範, 環境に応じた葉緑体分解を担う2種のオートファジー経路
    日本農芸化学会, 名古屋・名城大学, 2018年3月16-18日
  7. Izumi M, Kikuchi Y, Nakamura S, Coordination of two types of autophagy for the controlled turnover of chloroplasts
    East Asian Symposium on Senescence and Chronobiology in Plants, Korea・Daegu, 2017年11月30-12月1日
  8. 泉正範, 葉緑体成分のリサイクルと品質管理を担う2種のオートファジーとその細胞内動態
    ダイナミックアランスG3公開シンポジウム・ニコンイメージンジセンター学術講演会, 仙台・東北大学, 2017年11月28日
  9. 泉正範, 葉緑体を分解する2つのオートファジー経路とその環境応答性の違い
    日本植物学会, 千葉・東京理科大学, 2017年9月8-10日
  10. 中村咲耶, 泉正範, 選択的クロロファジー駆動モデルの構築に向けて
    日本植物学会, 千葉・東京理科大学, 2017年9月8-10日
  11. 泉正範, 2つのオートファジー経路による葉緑体成分のリサイクルと品質管理
    第3回植物の栄養研究会, 東京・東京工業大学, 2017年9月1-2日
  12. 泉正範,葉緑体オートファジー制御機構の解明を目指して:葉緑体の動的性状を捉えるバイオイメージングの活用
    第5回植物イメージングの会, 東京・日本女子大学, 2017年3月3日
  13. 泉正範, 光合成オルガネラ「葉緑体」を分解する2つのオートファジー経路
    北海道大学電子科学研究所学術講演会, 札幌・北海道大学, 2017年1月26日
  14. 泉正範, 光合成オルガネラ「葉緑体」の動的性状を視るバイオイメージング
    第一回フロンティアバイオイメージング研究会,仙台・東北大学,2016年7月20日,指名講演
  15. 泉正範, オートファジーによる光障害葉緑体の除去:選択的クロロファジー
    第18回植物オルガネラワークショップ, 盛岡・岩手大学, 2016年3月17日

Publications

  1. Izumi M*, Nakamura S, Li N (2019) Autophagic turnover of chloroplasts: its roles and regulatory mechanisms in response to sugar starvation. Frontiers in Plant Science (IF=3.677) 10: 280, doi: 10.3389/fpls.2019.00280(Invited original paper)
  2. Izumi M* (2019) Roles of the Clock in Controlling Starch Metabolism, Plant Physiology 179: 1441-1443 DOI: 10.1104/pp.19.00166 (Commentary)
  3. Nakamura S, Izumi M* (2019) Chlorophagy is ATG gene-dependent microautophagy process, Plant Signaling & Behavior (IF = 1.395) 14: 1554469, DOI: 10.1080/15592324.2018.1558679 (Invited original paper)
  4. Izumi M, Ishida H* (2018) An additional role for chloroplast proteins—an amino acid reservoir for energy production during sugar starvation, Plant Signaling & Behavior (IF = 1.395) 14: 1552057, DOI: 10.1080/15592324.2018.1552057(Invited original paper)
  5. Izumi M* (2018) Discovery of mitochondrial endonucleases, Plant Physiology 178: 1428-1429 DOI: 10.1104/pp.18.01197 (Commentary)
  6. 中村咲耶、泉正範* (2018) 壊れた葉緑体はオートファジーで丸ごと除去される, BSJ-review 植物科学最前線, 9: 36-45, DOI:10.24480/bsj-review.9a6.00132 (invited review)
  7. Nakamura S, Hidema J, Sakamoto W, Ishida H, Izumi M* (2018) Selective elimination of membrane-damaged chloroplasts via microautophagy, Plant Physiology (IF = 6.456), 177: 1007-1026, DOI: 10.1104/pp.18.00444(Original paper)
  8. Nakamura S, Izumi M* (2018) Regulation of chlorophagy during photoinhibition and senescence: lessons from mitophagy. Plant Cell & Physiology (IF = 4.760), 59:1135-1143, DOI: 10.1093/pcp/pcy096(invited review)
  9. Izumi M*, Nakamura S (2018) Chloroplast Protein Turnover: The Influence of Extraplastidic Processes, Including Autophagy. International Journal of Molecular Sciences (IF = 3.226), 19: 828, DOI: 10.3390/ijms19030828(invited review)
  10. Hirota T1, Izumi M1, Wada S, Makino A, Ishida H* (2018) Vacuolar Protein Degradation via Autophagy Provides Substrates to Amino Acid Catabolic Pathways as an Adaptive Response to Sugar Starvation in Arabidopsis thaliana. Plant & Cell Physiology (IF = 4.760) 59: 1363-1376, DOI: 10.1093/pcp/pcy005 (Original paper), 1equally contributed
  11. Izumi M*¸ Nakamura S (2017) Partial or entire: distinct responses of two types of chloroplast autophagy. Plant Signaling & Behavior (IF = 1.395) 12: e1393137, DOI: 10.1080/15592324.2017.1393137(Invited original paper)
  12. Izumi M*, Nakamura S (2017) Vacuolar digestion of entire damaged chloroplasts in Arabidopsis thaliana is accomplished by chlorophagy. Autophagy (IF = 8.593) 13: 1239-1240, DOI: 10.1080/15548627.2017.1310360(Invited original paper)
  13. Izumi M, Ishida H, Nakamura S, Hidema J* (2017) Entire photodamaged chloroplasts are transported to the central vacuole by autophagy. The Plant Cell (IF = 8.688) 29: 377-394, DOI: 10.1105/tpc.16.00637(Original paper)
  14. 和田慎也*, 泉正範(2016)生物情報科学・細胞生物学的手法から見えてきた植物栄養応答 2. イネの窒素リサイクルとオートファジー, 日本土壌肥料学雑誌 87: 388-393(Invited original paper)
  15. Izumi M, Hidema J, Ishida H* (2015) From Arabidopsis to cereal crops: Conservation of chloroplast protein degradation by autophagy indicates its fundamental role in plant productivity. Plant Signaling & Behavior (IF = 1.395) 10: e1101199 DOI: 10.1080/15592324.2015.1101199(Invited original paper)
  16. Wada S, Hayashida Y, Izumi M, Kurusu T, Hanamata S, Kanno K, Kojima S, Yamaya T, Kuchitsu K, Makino A, Ishida H* (2015) Autophagy supports biomass production and nitrogen use efficiency at the vegetative stage in rice. Plant Physiology (IF = 6.456) 168: 60-73, DOI: 10.1104/pp.15.00242 (Original paper)
  17. Izumi M, Hidema J, Wada S, Kondo E, Kurusu T, Kuchitsu K, Makino A, Ishida H* (2015) Establishment of monitoring methods for autophagy in rice reveals autophagic recycling of chloroplasts and root plastids during energy limitation. Plant Physiology (IF = 6.456) 167: 1307-1320, DOI: 10.1104/pp.114.254078 (Original paper)
  18. Takahashi S, Teranishi M, Izumi M, Takahashi M, Takahashi F, Hidema J* (2014) Transport of rice cyclobutane pyrimidine dimer (CPD) photolyase into mitochondria relies on a targeting sequence located in its C-terminal internal region. The Plant Journal (IF = 5.901) 79: 951-963, DOI: 10.1111/tpj.12598 (Original paper)
  19. Ishida H*, Izumi M, Wada S, Makino A (2014) Roles of autophagy in chloroplast recycling. Biochimica et Biophysica Acta - Bioenergetics (IF = 4.932) 1837: 512-521, DOI: 10.1016/j.bbabio.2013.11.009 (invited review) 
  20. Izumi M, Hidema J, Makino A, Ishida H* (2013) Autophagy contributes to nighttime energy availability for growth in Arabidopsis. Plant Physiology (IF = 6.456) 161: 1682-1693, DOI: 10.1104/pp.113.215632(Original paper)
  21. Izumi M, Hidema J, Ishida H* (2013) Deficiency of autophagy leads to significant changes of metabolic profiles in Arabidopsis. Plant Signaling & Behavior (IF=1.395) 8: e25023, DOI: 10.4161/psb.25023 (Invited original paper)
  22. Ono Y, Wada S, Izumi M, Makino A, Ishida H* (2013) Evidence for contribution of autophagy to Rubisco degradation during leaf senescence in Arabidopsis thaliana. Plant, Cell and Environment (IF=6.173) 36: 1147-1159, DOI: 10.1111/pce.12049(Original paper)
  23. Izumi M, Tsunoda H, Suzuki Y, Makino A, Ishida H* (2012) RBCS1A and RBCS3B, two major members within the Arabidopsis RBCS multigene family, function to yield sufficient Rubisco content for leaf photosynthetic capacity. Journal of Experimental Botany (IF=5.830) 63: 2159-2170, DOI: 10.1093/jxb/err434(Original paper)
  24. Izumi M, Ishida H* (2011) The changes of leaf carbohydrate contents as a regulator of autophagic degradation of chloroplasts via Rubisco-containing bodies during leaf senescence. Plant Signaling & Behavior (IF=1.395) 6: 685-687, DOI: 10.4161/psb.6.5.14949(Invited original paper)
  25. Izumi M, Wada S, Makino A, Ishida H* (2010) The autophagic degradation of chloroplasts via Rubisco-containing bodies is specifically linked to leaf carbon status but not nitrogen status in Arabidopsis. Plant Physiology (IF = 6.456) 154: 1196-1209, DOI: 10.1104/pp.110.158519 (Original paper)
  26. Wada S, Ishida H, Izumi M, Yoshimoto K, Ohsumi Y, Mae T, Makino A* (2009) Autophagy plays a role in chloroplast degradation during senescence in individually darkened leaves. Plant Physiology (IF = 6.456) 149: 885-893, DOI: 10.1104/pp.108.130013(Original paper)
  27. Ishida H*, Yoshimoto K, Izumi M, Reisen D, Yano Y, Makino A, Ohsumi Y, Hanson MR, Mae T (2008) Mobilization of Rubisco and stroma-localized fluorescent protein of chloroplasts to the vacuole by an ATG gene-dependent autophagic process. Plant Physiology (IF = 6.456) 148: 142-155, DOI: 10.1104/pp.108.122770(Original paper)