Senior Researcher
Ph. D
- Senior Research Scientist, Molecular Bioregulation Research Team
RIKEN Center for Sustainable Resource Science - #N401 4F Bioscience Building, 2-1 Hirosawa, Wako, Saitama 351-0198 Japan
E-mail: masanori.izumi [at] riken.jp (Please replace [at] to @)
Personal History
- 2012.3 Ph.D, Department of Applied Biological Chemistry, Graduate School of Agricultural Science, Tohoku University
- 2009.4 JSPS Research Fellow (DC1)
- 2012.4 JSPS Research Fellow (PD)
- 2014.4 Assistant Professor, Frontier Research Institute for Interdisciplinary Sciences, Tohoku University
- 2014.4 (Concurrent appointment) Assistant Professor, Graduate School of Life Sciences, Tohoku University
- 2015.8 (Concurrent appointment) Visiting Researcher, University of Oxford
- 2016.10 (Concurrent appointment) JST PRESTO Researcher
- 2019.4 Research Scientist, Molecular Bioregulation Research Team, RIKEN Center for Sustainable Resource Science
- 2020.10 Senier Research Scientist, Molecular Bioregulation Research Team, RIKEN Center for Sustainable Resource Science
Keywords
- Chloroplast, Autophagy, Protein Degradation
Awards
- 2020.9 The encouragement award, Japanese Society of Soil Science and Plant Nutrition
- 2019.4 The Young Scientists’ Prize, The Commendation for Science and Technology by the Minister of Education, Culture, Sports, Science and Technology
- 2015.1 Best Poster Award, Gordon Research Conference on Chloroplast Biotechnology
Invited and Plenary Lectures
- "Two forms of autophagy for chloroplast turnover"
RIKEN seminar, RIKEN, 16th January, 2020 - "Chloroplast degradation pathways by autophagy"
The 6th CSRS-ITbM joint workshop, RIKEN, 8th January, 2020 - "Selective turnover of photodamaged chloroplasts by autophagy"
Japan-Finland Seminar 2018, Kobe, 24th-27th September, 2018 - "How chlorophagy is executed: Induction and intracellular events"
Gordon Research Conference on Mitochondria & Chloroplasts, Italy・Lucca, 8th-13th July, 2018 - "Coordination of two types of autophagy for the controlled turnover of chloroplasts"
East Asian Symposium on Senescence and Chronobiology in Plants, Korea・Daegu, 1st December, 2017
Publications
Original papers
- Izumi M*, Nakamura S, Otomo K, Ishida H, Hidema J, Nemoto T, Hagihara S (2023) Autophagosome development and chloroplast segmentation occur synchronously for piecemeal degradation of chloroplasts. eLife DOI: 10.7554/eLife.93232.1
- Nakamura S, Hagihara S, Otomo K, Ishida H, Hidema J, Nemoto T, Izumi M* (2021) Autophagy contributes to the quality control of leaf mitochondria. Plant Cell Physiology 62: 229-247
- Kikuchi Y, Nakamura S, Woodson JD, Ishida H, Ling Q, Hidema J, Jarvis RP, Hagihara S, Izumi M* (2020) Chloroplast autophagy and ubiquitination combine to manage oxidative damage and starvation responses. Plant Physiology 183: 1531–1544, DOI: 10.1104/pp.20.00237
- Nakamura S, Izumi M* (2019) Chlorophagy is ATG gene-dependent microautophagy process, Plant Signaling & Behavior 14: 1554469, DOI: 10.1080/15592324.2018.1558679
- Izumi M, Ishida H* (2019) An additional role for chloroplast proteins—an amino acid reservoir for energy production during sugar starvation, Plant Signaling & Behavior 14: 1552057, DOI: 10.1080/15592324.2018.1552057
- Nakamura S, Hidema J, Sakamoto W, Ishida H, Izumi M* (2018) Selective elimination of membrane-damaged chloroplasts via microautophagy, Plant Physiology, 177: 1007-1026, DOI: 10.1104/pp.18.00444
- Hirota T1, Izumi M1, Wada S, Makino A, Ishida H* (2018) Vacuolar Protein Degradation via Autophagy Provides Substrates to Amino Acid Catabolic Pathways as an Adaptive Response to Sugar Starvation in Arabidopsis thaliana. Plant & Cell Physiology 59: 1363-1376, DOI: 10.1093/pcp/pcy005, 1equally contributed
- Izumi M*¸ Nakamura S (2017) Partial or entire: distinct responses of two types of chloroplast autophagy. Plant Signaling & Behavior 12: e1393137, DOI: 10.1080/15592324.2017.1393137
- Izumi M*, Nakamura S (2017) Vacuolar digestion of entire damaged chloroplasts in Arabidopsis thaliana is accomplished by chlorophagy. Autophagy 13: 1239-1240, DOI: 10.1080/15548627.2017.1310360
- Izumi M, Ishida H, Nakamura S, Hidema J* (2017) Entire photodamaged chloroplasts are transported to the central vacuole by autophagy. The Plant Cell 29: 377-394, DOI: 10.1105/tpc.16.00637
- Wada S, Hayashida Y, Izumi M, Kurusu T, Hanamata S, Kanno K, Kojima S, Yamaya T, Kuchitsu K, Makino A, Ishida H* (2015) Autophagy supports biomass production and nitrogen use efficiency at the vegetative stage in rice. Plant Physiology 168: 60-73, DOI: 10.1104/pp.15.00242
- Izumi M, Hidema J, Ishida H* (2015) From Arabidopsis to cereal crops: Conservation of chloroplast protein degradation by autophagy indicates its fundamental role in plant productivity. Plant Signaling & Behavior 10: e1101199 DOI: 10.1080/15592324.2015.1101199
- Izumi M, Hidema J, Wada S, Kondo E, Kurusu T, Kuchitsu K, Makino A, Ishida H* (2015) Establishment of monitoring methods for autophagy in rice reveals autophagic recycling of chloroplasts and root plastids during energy limitation. Plant Physiology 167: 1307-1320, DOI: 10.1104/pp.114.254078
- Takahashi S, Teranishi M, Izumi M, Takahashi M, Takahashi F, Hidema J* (2014) Transport of rice cyclobutane pyrimidine dimer (CPD) photolyase into mitochondria relies on a targeting sequence located in its C-terminal internal region. The Plant Journal 79: 951-963, DOI: 10.1111/tpj.12598
- Izumi M, Hidema J, Ishida H* (2013) Deficiency of autophagy leads to significant changes of metabolic profiles in Arabidopsis. Plant Signaling & Behavior 8: e25023, DOI: 10.4161/psb.25023
- Izumi M, Hidema J, Makino A, Ishida H* (2013) Autophagy contributes to nighttime energy availability for growth in Arabidopsis. Plant Physiology 161: 1682-1693, DOI: 10.1104/pp.113.215632
- Ono Y, Wada S, Izumi M, Makino A, Ishida H* (2013) Evidence for contribution of autophagy to Rubisco degradation during leaf senescence in Arabidopsis thaliana. Plant, Cell and Environment 36: 1147-1159, DOI: 10.1111/pce.12049
- Izumi M, Tsunoda H, Suzuki Y, Makino A, Ishida H* (2012) RBCS1A and RBCS3B, two major members within the Arabidopsis RBCS multigene family, function to yield sufficient Rubisco content for leaf photosynthetic capacity. Journal of Experimental Botany 63: 2159-2170, DOI: 10.1093/jxb/err434
- Izumi M, Ishida H* (2011) The changes of leaf carbohydrate contents as a regulator of autophagic degradation of chloroplasts via Rubisco-containing bodies during leaf senescence. Plant Signaling & Behavior 6: 685-687, DOI: 10.4161/psb.6.5.14949
- Izumi M, Wada S, Makino A, Ishida H* (2010) The autophagic degradation of chloroplasts via Rubisco-containing bodies is specifically linked to leaf carbon status but not nitrogen status in Arabidopsis. Plant Physiology 154: 1196-1209, DOI: 10.1104/pp.110.158519
- Wada S, Ishida H, Izumi M, Yoshimoto K, Ohsumi Y, Mae T, Makino A* (2009) Autophagy plays a role in chloroplast degradation during senescence in individually darkened leaves. Plant Physiology 149: 885-893, DOI: 10.1104/pp.108.130013
- Ishida H*, Yoshimoto K, Izumi M, Reisen D, Yano Y, Makino A, Ohsumi Y, Hanson MR, Mae T (2008) Mobilization of Rubisco and stroma-localized fluorescent protein of chloroplasts to the vacuole by an ATG gene-dependent autophagic process. Plant Physiology 148: 142-155, DOI: 10.1104/pp.108.122770
Review papers
- Nakamura S, Hagihara S, Izumi M* (2021) Mitophagy in plants, Biochimica et Biophysica Acta - General Subjects 1865: 129916
- Izumi M*, Nakamura S, Li N (2019) Autophagic turnover of chloroplasts: its roles and regulatory mechanisms in response to sugar starvation. Frontiers in Plant Science 10: 280, doi: 10.3389/fpls.2019.00280
- Nakamura S, Izumi M* (2018) Regulation of chlorophagy during photoinhibition and senescence: lessons from mitophagy. Plant Cell & Physiology, 59:1135-1143, DOI: 10.1093/pcp/pcy096
- Izumi M*, Nakamura S (2018) Chloroplast Protein Turnover: The Influence of Extraplastidic Processes, Including Autophagy. International Journal of Molecular Sciences, 19: 828, DOI: 10.3390/ijms19030828
- Ishida H*, Izumi M, Wada S, Makino A (2014) Roles of autophagy in chloroplast recycling. Biochimica et Biophysica Acta - Bioenergetics 1837: 512-521, DOI: 10.1016/j.bbabio.2013.11.009
Commentaries
- Izumi M*, Yoshimoto K, Batoko H (2020) Organelle Autophagy in Plant Development. Froniers in Plant Science 11: 502 DOI: 10.3389/fpls.2020.00502
- Izumi M* (2019) How to identify autophagy modulators. Plant Physiology 181: 853-854 DOI: 10.1104/pp.19.01146
- Izumi M* (2019) Heat shock proteins support refolding and shredding of misfolded proteins. Plant Physiology 180: 1777 DOI:10.1104/pp.19.00711
- Izumi M* (2019) Mitochondrial dynamics for pollen development, Plant Physiology 180: 686-687 DOI: 10.1104/pp.19.00335
- Izumi M* (2019) Roles of the Clock in Controlling Starch Metabolism, Plant Physiology 179: 1441-1443 DOI: 10.1104/pp.19.00166
- Izumi M* (2018) Discovery of mitochondrial endonucleases, Plant Physiology 178: 1428-1429 DOI: 10.1104/pp.18.01197